关注“广研传媒”官方微博
关注“广研传媒”官方微信
文章查询:
分享按钮
现在的位置:首页 >> 行业动态
截肢者的福音:改进机器人手的控制
内容来源:《机床与液压》杂志社    浏览次数:33    更新时间:2019/9/19 13:33:45

近期,Nature Machine Intelligence杂志上发布了关于EPFL科学家改进截肢者个人手指控制和自动化相结合的结果。这是跨越神经工程学和机器人学的挑战,成功地在三名截肢者和七名健康受试者身上进行了测试。


在神经工程学方面,通过突破截肢者残肢上的肌肉活动,用手指控制假手,这是一个新方向,之前从未做过,对于神经修复术中的共享控制研究有着深刻意义。另一方面在机器人领域,让机器人手强有力地抓住物体,并保持一段时间。

负责EPFL学习算法和系统实验室的Aude Billard表示,“当你拿着手中的物体并且它开始滑动时,你只需要几毫秒的时间来做出反应,机器人手有能力在400毫秒内做出反应。在手指周围配备压力传感器,它可以在大脑真正感知物体滑动之前对物体作出反应和稳定。”

那么,共享控制是如何工作的呢?

首先,要先了解用户意图,才能将其转换为机器手的手指运动。

截肢者要先示范一系列手部动作,通过传感器检测截肢者的肌肉活动,让机器人学习哪种手部动作对应哪种肌肉活动,这样有助于控制手指以帮助截肢者更好地完成他想做的事。

“因外部环境影响,有些信息可能不是我们需要的。我们需要一种机器学习算法,让他能够提取有用的信息。”该出版物的第一作者Katie Zhuang说。

于是,科学家设计了这种机器学习算法,以便用户更好地使用机器人,让机器更好地实现自动化。当机器手与物体接触时,传感器会有所反应,机器学习算法会让机器手自动抓取物体。这种自动抓取是机械臂给我们的启示,不仅可以推断物体形状,还能仅凭触觉信息抓住物体,即使它“看不见”。

然而,这个算法目前还不适用于市面上的机器手。 

EPFL的Bertarelli基金会转化神经工程学教席、Scuola Superiore Sant“生物电子学教授”Silvestro Micera表示,这种方法可用于几种神经假体应用,比如仿生手假肢和脑机界面,这样可以增加这些装置的临床影响和可用性。” 

目前的技术可以通过用一些肌肉信号直接控制机器手来工作,这种自学仿生手或许可以激发“新一代”假肢的研究和应用。
logo集
新RoboIMEX250mmx175mm

 




分享到:
最新图文
如果您有问题需要咨询,请点我洽谈,您也可以加我QQ:313449665版权所有:广州机械科学研究院《机床与液压》杂志社