欢迎访问机床与液压官方网站!

咨询热线:020-32385312 32385313 RSS EMAIL-ALERT
基于改进YOLOv8的堆叠零件实例分割研究
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Stacked Part Instance Segmentation Based on Improved YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现复杂工业环境下机器人对堆叠零件的快速识别拣选,构建一种改进的YOLOv8s实例分割模型,并应用于堆叠零件实时识别分割中。针对堆叠工业零件不易分割的问题,将原始模型的主干网络替换为提取特征能力更强的PoolFormer主干网络,提升堆叠零件边缘分割效果;为了更好地过滤掉多余背景信息,保留关键信息,引入了效果更好的CARAFE上采样模块。试验结果表明,改进后模型的分割平均精度和预测框平均精度分别为93.57%和97.47%,相比原模型提升了1.89%和1.23%,且远高于同类型的YOLACT++和SOLOv2模型,验证了改进模型的有效性。

    Abstract:

    In order to achieve rapid recognition and selection of stacked parts by robots in complex industrial environments,an improved YOLOv8s instance segmentation model was constructed and applied to real-time recognition and segmentation of stacked parts.To address the issue of difficult segmentation of stacked industrial parts,the original model′s backbone network was replaced with a PoolFormer backbone network with stronger feature extraction capabilities to improve the edge segmentation effect of stacked parts;in order to better filter out excess background information and retain key information,a better CARAFE upsampling module was introduced.The experimental results show that the average segmentation accuracy and prediction box accuracy of the improved model are 93.57% and 97.47%,respectively,which are 1.89% and 1.23% higher than the original model,and far higher than the YOLACT++and SOLOv2 models with the same type,verifying the effectiveness of the improved model.

    参考文献
    相似文献
    引证文献
引用本文

王众玄,邹光明,顾浩文,许艳涛,李陈佳瑞.基于改进YOLOv8的堆叠零件实例分割研究[J].机床与液压,2024,52(19):9-16.
WANG Zhongxuan, ZOU Guangming, GU Haowen, XU Yantao, LI Chenjiarui. Research on Stacked Part Instance Segmentation Based on Improved YOLOv8[J]. Machine Tool & Hydraulics,2024,52(19):9-16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-10-23
  • 出版日期: 2024-10-15
文章二维码