欢迎访问机床与液压官方网站!

咨询热线:020-32385312 32385313 RSS EMAIL-ALERT
基于时序灰度图和分组ResNet的回转支承故障诊断
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Fault Diagnosis of Slewing Bearing Based on Time Series Gray Image and Grouped ResNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决大型回转支承转速低、背景噪声大、常规的声发射诊断方法难以适用的问题,提出一种基于灰度图和ResNet模型相结合的声发射信号处理方法。将声发射信号编码为二维灰度图像,并通过ResNet模型识别声发射信号编码得到的灰度图,通过训练模型实现对大型回转支承的故障诊断。对某型号大型回转支承进行试验,结果表明:以时序二维化后的灰度图作为故障诊断依据,可以显著提高回转支承的故障诊断准确率;相比于传统方法,所提方法泛化性能和鲁棒性能更好,可以很好地应用在实际工况中的大型回转支承故障诊断。

    Abstract:

    In order to solve the problems of low speed of large slewing bearings, high background noise, and difficulty in applying conventional acoustic emission diagnostic methods, an acoustic emission signal processing method based on the combination of gray image and ResNet model was proposed. The acoustic emission signal was encoded into a two-dimensional grayscale image, and the grayscale image obtained by the acoustic emission signal encoding was identified through the ResNet model, and the fault diagnosis of the large slewing bearing was realized through the training model.A certain type of large-scale slewing bearing was tested. The results show that the fault diagnosis accuracy of the slewing bearing can be significantly improved by using the two-dimensional gray-scale diagram of the time series as the basis;compared with the traditional method, the proposed method has better generaliztion performance and robustness, and it can be well applied to the fault diagnosis of large slewing bearings in actual working conditions.

    参考文献
    相似文献
    引证文献
引用本文

李云飞,苏文胜.基于时序灰度图和分组ResNet的回转支承故障诊断[J].机床与液压,2022,50(12):187-191.
LI Yunfei, SU Wensheng. Fault Diagnosis of Slewing Bearing Based on Time Series Gray Image and Grouped ResNet[J]. Machine Tool & Hydraulics,2022,50(12):187-191

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-08-19
  • 出版日期: 2022-06-28
文章二维码